Power-performance tradeoffs in data center servers: DVFS, CPU pinning, horizontal, and vertical scaling
نویسندگان
چکیده
Dynamic Voltage and Frequency Scaling (DVFS), CPU pinning, horizontal, and vertical scaling, are four techniques that have been proposed as actuators to control the performance and energy consumption on data center servers. This work investigates the utility of these four actuators, and quantifies the power-performance tradeoffs associated with them. Using replicas of the German Wikipedia running on our local testbed, we perform a set of experiments to quantify the influence of DVFS, vertical and horizontal scaling, and CPU pinning on end-to-end response time (average and tail), throughput, and power consumption with different workloads. Results of the experiments show that DVFS rarely reduces the power consumption of underloaded servers by more than 5%, but it can be used to limit the maximal power consumption of a saturated server by up to 20% (at a cost of performance degradation). CPU pinning reduces the power consumption of underloaded server (by up to 7%) at the cost of performance degradation, which can be limited by choosing an appropriate CPU pinning scheme. Horizontal and vertical scaling improves both the average and tail response time, but the improvement is not proportional to the amount of resources added. The load balancing strategy has a big impact on the tail response time of horizontally scaled applications.
منابع مشابه
Database-Managed CPU Performance Scaling for Improved Energy Efficiency
Dynamic voltage and frequency scaling (DVFS) is a technique for adjusting the speed and power consumption of processors, allowing performance to be traded for reduced power consumption. Since CPUs are typically the largest consumers of power in modern servers, DVFS can have a significant impact on overall server power consumption. Modern operating systems include DVFS governors, which interact ...
متن کاملTowards Optimal Power Management: Estimation of Performance Degradation due to DVFS on Modern Processors
The alarming growth of the power consumption of data centers coupled with low average utilization of servers suggests the use of power management strategies. Such actions however require the understanding of the effects of the power management actions on the performance of data center applications running on managed platforms. The goal of our research is to accurately estimate power savings and...
متن کاملEnergy Aware Task Scheduling in Data Centers
Nowadays energy consumption problem is a major issue for data centers. The energy consumption increases significantly along with its CPU frequency getting higher. With Dynamic Voltage and Frequency Scaling (DVFS) techniques, CPU could be set to a suitable working frequency during the running time according to the workload. On the other side, reducing frequency implies that more servers will be ...
متن کاملGreen Energy-aware task scheduling using the DVFS technique in Cloud Computing
Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...
متن کاملA Survey and Measurement Study of GPU DVFS on Energy Conservation
Energy efficiency has become one of the top design criteria for current computing systems. The dynamic voltage and frequency scaling (DVFS) has been widely adopted by laptop computers, servers, and mobile devices to conserve energy, while the GPU DVFS is still at a certain early age. This paper aims at exploring the impact of GPU DVFS on the application performance and power consumption, and fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Future Generation Comp. Syst.
دوره 81 شماره
صفحات -
تاریخ انتشار 2018